# Field Evaluation of Alternative Isolation Joints at O'Hare

ARMEN AMIRKHANIAN (PRESENTING)
UNIVERSITY OF ILLINOIS URBANACHAMPAIGN

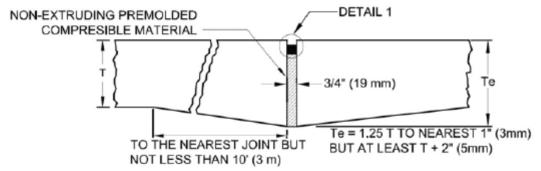
### Thanks

- O'Hare Modernization Program (money!)
- Ross Anderson of Bowman, Barrett & Associates, Inc. (access!)
- Dr. David Brill of FAA Airport Pavement Technology R&D Branch (brains!)
- ERI, Inc. (equipment!)
- Undergrads (free labor!)

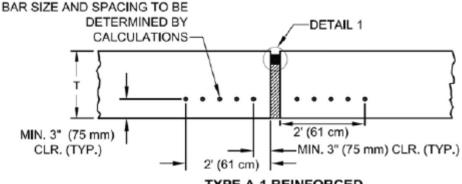


### Outline

- Introduction to joint design
- Project objectives
- Field instrumentation
- Data analysis
- Discussion
- Conclusions


### Isolation Joint Design

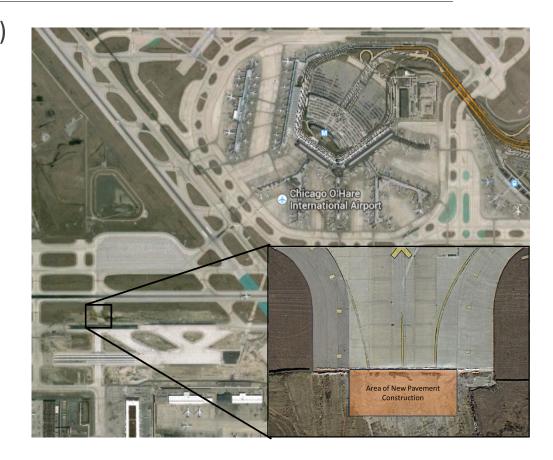
- Joints used in areas where there is differential slab movement expected
  - Commonly employed at the intersections of taxiways and runways


### Isolation Joint Design

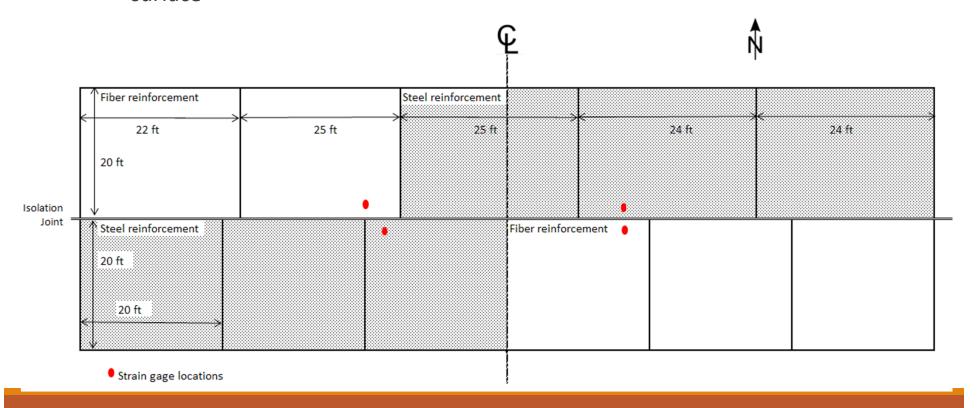
FAA allows for two designs

### **ISOLATION JOINTS**




### **TYPE A THICKENED EDGE**




**TYPE A-1 REINFORCED** 

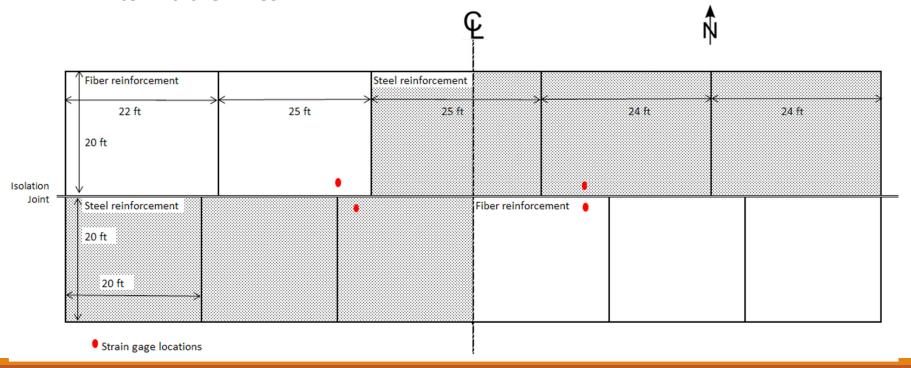
### Project Objectives

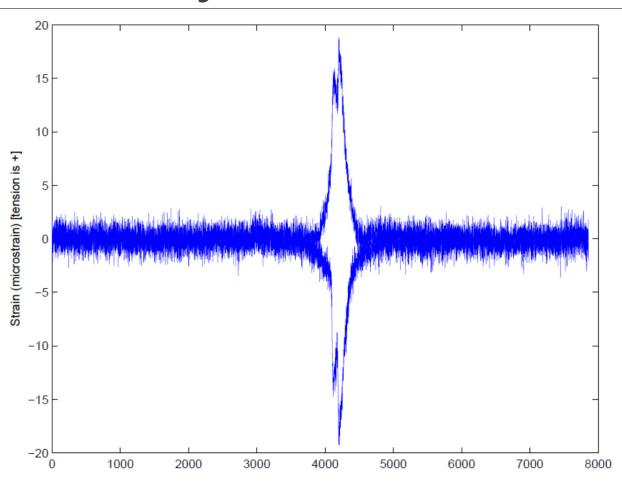
- Does the Type A-1 (reinforced) isolation joint design perform adequately under live aircraft loading?
- Does a novel, fiber reinforced isolation joint design perform adequately under live aircraft loading?



- Four strain gauge trees located on opposite sides of the isolation joint
  - Each gauge tree held two strain gauges two inches from the top and bottom surface






Data recorded using UIUC Mobile Research Lab



- Only west side sensors were monitored during live aircraft loading due to safety concerns accessing the buried wires.
  - Also, our escort didn't like me going around digging a bunch of holes trying to find the wires





### Data collected from 04:00 to 06:00 on November 11, 2013

| Flight  | Aircraft  | Fiber Section<br>(Embedded) | Steel Section<br>(Embedded) | Steel Section<br>(Rebar) |
|---------|-----------|-----------------------------|-----------------------------|--------------------------|
| FDX1950 | A300B4    | 7.6                         | 18.9                        | 16.0                     |
| FDX1706 | DC-10-10F | 24.8                        | 14.3                        | 13.4                     |
| FDX1447 | MD-11F    | 11.5                        | 22.9                        | 20.4                     |
| FDX1157 | DC-10-10F | 10.0                        | 21.3                        | 18.2                     |
| FDX1405 | DC-10-10F | 11.7                        | 20.3                        | 21.5                     |

Fiber section: 25' x 20' slabs

Steel section: 20' x 20' slabs

• ILLI-SLAB was used to analyze the data and the field data was used to calibrate the analysis by establishing an offset for each aircraft

| Aircraft  | Fiber Section<br>Embedded<br>(με) | Fiber Section<br>ILLI-SLAB (με) | Steel Section<br>Embedded<br>(με) | Steel Section<br>ILLI-SLAB (με) | Offset (ft) |
|-----------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|-------------|
| A300B4    | 7.6                               | 7                               | 18.9                              | 19                              | 1.5, W      |
| DC-10-10F | 24.8                              | 22                              | 14.3                              | 9                               | 6.0, E      |
| MD-11F    | 11.5                              | 12                              | 22.9                              | 24                              | 2.5, E      |
| DC-10-10F | 10.0                              | 8                               | 21.3                              | 22                              | 2.0, E      |
| DC-10-10F | 11.7                              | 8                               | 20.3                              | 22                              | 2.0, E      |

Fiber section: 25' x 20' slabs

Steel section: 20' x 20' slabs

| Aircraft  | Isolation Joint Edge Stress (psi) |                |  |  |
|-----------|-----------------------------------|----------------|--|--|
| Aircraft  | Fiber Reinforced                  | Thickened Edge |  |  |
| A300B4    | 479                               | 335            |  |  |
| DC-10-10F | 266                               | 185            |  |  |
| MD-11F    | 301                               | 212            |  |  |
| DC-10-10F | 332                               | 233            |  |  |
| DC-10-10F | 332                               | 233            |  |  |

Slab size: 25' x 20'

Tested Flexural Strength > 900 psi

| Aircraft  | Isolation Joint Edge Stress (psi) |                |  |  |
|-----------|-----------------------------------|----------------|--|--|
| Aircraft  | Steel Reinforced                  | Thickened Edge |  |  |
| A300B4    | 526                               | 365            |  |  |
| DC-10-10F | 262                               | 182            |  |  |
| MD-11F    | 315                               | 220            |  |  |
| DC-10-10F | 341                               | 237            |  |  |
| DC-10-10F | 341                               | 237            |  |  |

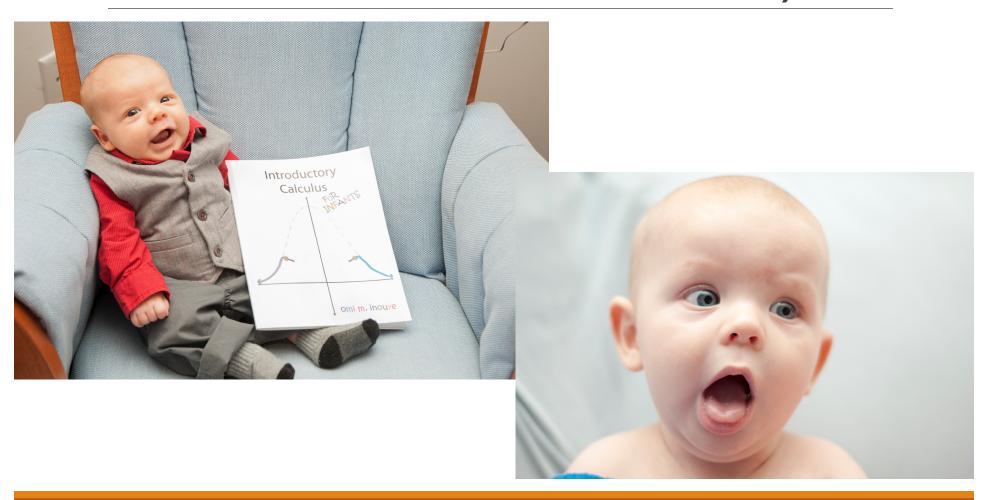
Slab size: 20' x 20'

Tested Flexural Strength > 900 psi

Airbus 300B4 LTE 76% (measured)

| _               | Loading Case                            | Peak Tensile Stress, psi |
|-----------------|-----------------------------------------|--------------------------|
| 25'x20' slabs – | Fiber Reinforced Section                | 301                      |
|                 | Fiber Reinforced Section Thickened Edge | 214                      |
| 20'x20' slabs – | Steel Reinforced Section                | 331                      |
|                 | Steel Reinforced Section Thickened Edge | 235                      |

### Discussion


- Without the thickened edge, the stress is higher. Is that bad?
  - Not necessarily, we have two cases:
  - 1. No load transfer (e.g. granular base layer)
  - 2. We consider the load transfer effects from the stabilized base layer

| Section                   | No Load<br>Transfer | 76% Load<br>Transfer | FAA N100<br>Limit | FAA N80<br>Limit |
|---------------------------|---------------------|----------------------|-------------------|------------------|
| 25'x20' slabs             | 479                 | 301                  | 1.9 million       | 2.6 million      |
| 25'x20' slabs (thickened) | 335                 | 214                  | 2.4 billion       | 3.4 billion      |
| 20'x20' slabs             | 526                 | 331                  | 400,000           | 534,000          |
| 20'x20' slabs (thickened) | 365                 | 235                  | 271 million       | 369 million      |

### Conclusions

- Type A-1 and fiber reinforced joint design produces more stress than an equivalently modeled thickened edge joint design
- Higher stress for the alternative joint designs has an impact on the fatigue life, but not expected to be a concern due to other failure mechanisms
- Using an alternative joint design must coincide with the use of a stabilized base to prevent excessively high free edge stresses
- Alternative joint designs appear to be viable but the topic requires significantly more testing and field data
  - Instrumentation of taxiways/aprons/runways cannot be haphazard

# Questions? (ask my son, he's smarter albeit sillier)

